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ABSTRACT

NON-REALIZABILITY OF BRAID GROUPS BY DIFFEOMORPHISMS

Uğurlu, Nalan Sena

M.S., Department of Mathematics

Supervisor: Prof. Dr. Mustafa Korkmaz

August 2023, 48 pages

The mapping class group Mod(Σg) is the group of isotopy classes of orientation pre-

serving diffeomorphisms of Σg. The realization problem asks if a given subgroup

Γ ↪→ Mod(Σg, z) lifts to Diff+(Σg, z) where Σg is a closed orientable surface, and

Mod(Σg, z) is the mapping class group of Σg with n marked points. Morita’s non-

lifting theorem gives a negative answer to the realization problem for infinite sub-

groups of the mapping class group Mod(Σg). In this thesis, we focus on two different

proofs of this theorem one due to Bestvina, Church and Souto [21], and the other due

to Salter and Tshishiku [22]. For this purpose, in the first proof, we will consider the

case that Γ is an arbitrary finite index subgroup of the mapping class group directly

[21], and we will consider the result with different numbers of marked points of Σg

as well. In the second proof, we will consider the case that Γ is a braid group, i.e.,

Γ = Bn [22], then use this to prove Morita’s result.

Keywords: Mapping Class Groups, Braid Groups, Orientation Preserving Diffeomor-

phisms, Morita’s Non-lifting Theorem
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ÖZ

ÖRGÜ GRUPLARININ DİFEOMORFİZMALARLA GÖSTERİLMEMESİ

Uğurlu, Nalan Sena

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Mustafa Korkmaz

Ağustos 2023 , 48 sayfa

Gönderim sınıf grubu Mod(Σg), Σg’nin yön koruyan difeomorfizmalarının izotopi

sınıflarının grubudur. Gösterim problemi, verilen bir Γ ↪→ Mod(Σg, z) alt grubunun

Diff+(Σg, z)’a yükselip yükselmediğini sorar, burada Σg kapalı, yönledirilebilir bir

yüzey ve Mod(Σg, z), Σg’nin n işaretli noktalı gönderim sınıf grubudur. Morita’nın

yükseltilmeme teoremi, gönderim sınıf gruplarının sonsuz altgurpları için gösterim

problemine olumsuz bir cevap verir. Bu tezde, bu teoremin biri Bestvina, Church

ve Souto [21]’ya ve diğeri Salter ve Tshishiku [22]’ya ait olan iki farklı kanıtına

odaklanıyoruz. Bu amaçla, ilk kanıtta direkt olarak Γ’nın gönderim sınıf grubunun

rastgele bir sonlu indeksli alt grubu olduğu durumu ele alacağız [21] ve ayrıca farklı

sayıda işaretli nokta ile elde edilen sonucu inceleyeceğiz. İkinci kanıtta, Γ’nın bir

örgü grubu olduğu durumu ele alacağız, yani Γ = Bn [22], ardından bunu Morita’nın

sonucunu kanıtlamak için kullanacağız.

Anahtar Kelimeler: Gönderim Sınıf Grupları, Örgü Grupları, Oryantasyon Koruyan

Difeomorfizmalar, Morita’nın Yükseltilmeme Teoremi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

For an orientable surface Σg, the mapping class group Mod(Σg) is the group of

orientation-preserving diffeomorphisms of Σg up to isomorphism, and Mod(Σg, z)

is the mapping class group of Σg with n marked points where z is the set of marked

points. The realization problem asks if a subgroup Γ ↪→ Mod(Σg, z) lifts to the

set Diff+(Σg, z) of orientation preserving diffeomorphisms fixing the set z or the set

Homeo+(Σg) of orientation preserving homeomorphisms, and this problem has been

answered for the cases of different types of the group Γ.

Nielsen realization problem asks that for a finite subgroup Γ of Mod(Σg), does Γ lift

to Diff+(Σg) or Homeo+(Σg), and it is answered affirmatively by Kerckhoff [12]. In

this article, Kerckhoff showed that a finite subgroup Γ ≤ Mod(Σg) does not lift to

Diff+(Σg) using foliations for the orientable case (i.e., the case that Σg is orientable),

and he mentioned the non-orientable case as well. Before him, Kravetz [4] claimed

to prove the same thing, but his proof was using the statement that the Teichmüller

space has negative curvature. However, Masur showed that this statement was false

(see [8] and [11]).

In his paper [13], Morita stated that we can ask the same question for infinite sub-

groups of the mapping class group as well, and showed that the answer for Diff+(Σg)

was negative where Σg is of genus g ≥ 18. Later, in his article [16], Morita showed

that g ≥ 5 is enough to get the same answer instead of 18. Markovic showed in his

paper [17] that for Σg a closed surface of genus g > 5, Mod(Σg) cannot be realized

by Homeo+(Σg). In this paper, he also stated that the result holds for g ≥ 2 indeed.
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He said that the way he used to prove the case g > 5 can be generalized to g > 2, but

the case g = 2 needs a different technique than he used.

1.2 Contributions and Novelties

In this thesis, we try to understand two different proofs of Morita’s result for g >

5 due to [21], [22]. The first proof uses the Euler numbers to show a finite index

subgroup Γ ≤ Mod(Σg, z) does not lift to the set G(Σg, z) of orientation preserving

homeomorphisms fixing the point z ∈ Σg which are differentiable at z with its inverse

is also differentiable at z, and then generalizes this result [21]. Before introducing the

second proof, we need to know the braid groups. A braid group is the group of isotopy

classes of braids. This group was first defined by Emil Artin [2]. The second proof we

are going to consider uses the non-realizability of braid groups by diffeomorphisms

and then shows that Mod(Σg) does not lift to Diff+(Σg) for Σg is a closed orientable

surface of genus g ≥ 2 [22].

1.3 The Outline of the Thesis

In Chapter 2, we give some basic definitions and properties of needed objects such as

indicable groups, one-parameter subgroups, braid and mapping class groups.

Chapter 3 consists of two main sections both of which are dedicated to a particu-

lar proof of Morita’s non-lifting theorem. In each section, we will see the needed

theorems and prove some of them, and then get Morita’s result.

In Subsection 3.1.3, we see a proof of Morita’s non-lifting theorem by using Propo-

sition 46 which says a finite index subrgoup of π1(Σg, z) does not lift to G(Σg, z) for

g ≥ 2. To prove this, we use Milnor-Wood Inequality 43, 42, and the existence of a

diffeomorphism τ (in Lemma 49) and Lemma 51.

In Subsection 3.2.2, we prove the same theorem by means of braid groups and Remark

16 which is about the action of Bn−1 on the points of Bn, non-indicability of Bn

for n ≥ 5, Thurston Stability Theorem 58 and Lemma 57 which says that every

2



homomorphism f : Bn → GL+
n (R) has abelian image for n ≥ 5. To prove this

lemma, we use One Parameter Subgroups 2.1.4.1.
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CHAPTER 2

PRELIMINARIES

2.1 Algebra

A group G is said to be perfect if it is equal to its commutator subgroup, namely

G = [G,G].

Let H be a subgroup of a group G.

• The index [G : H] of H in G is defined as the number of left (or, equivalently

right) cosets of H .

• H is said to be of finite index if the index of H in G is finite.

We will use the following definition to give an example in Section 2.1.1 only.

Let X = {x1, . . . , xn} be a set. Define X−1 as {x−1
1 , . . . , x−1

n }. A finite sequence of

elements of X ∪X−1 is called a word. If the sequence has no elements, then we call

it the empty word. By cancelling the elements of the form x · (x−1) from any word,

we get a group. Then the group G is called a free group with generating set X .

2.1.1 Indicable and Non-indicable Groups

Definition 1. Let G be a group. If there is a surjective homomorphism from H to Z

for every non-trivial finitely generated subgroup H ≤ G, this group is called locally

indicable.

As an example of locally indicable group, consider the free group F{a,b} generated

5



by two elements a, b. Any non-trivial subgroup of F{a,b} is a free group, and any

free group can be surjected onto Z homomorphically (for example, one can take the

homomorphism sending a generator to 1 and the other generators to 0). This means,

there is a surjective homomorphism from any non-trivial finitely generated subgroup

of F{a,b} to Z which makes F{a,b} locally indicable.

For other two examples, consider the groups Q,R with respect to usual addition.

Their non-trivial finitely generated subgroups are abelian and any element of these

groups are of infinite order. Recall the fundamental theorem of finitely generated

abelian groups which says that every finitely generated abelian group is isomorphic

to a direct sum of Zn and a torsion subgroup. Since the elements of an arbitrary

non-trivial finitely generated subgroup H of Q or R are of infinite order, H should

be isomorphic to Zn for some n ∈ N, and therefore it can be surjected into Z ho-

momorphically. Since H is arbitrary, this reasoning holds for any non-trivial finitely

generated subgroup, and so Q,R are locally indicable.

Definition 2. A group G is called strongly non-indicable if it has a non-trivial finitely

generated perfect subgroup.

Remark 3. Note that if a group G is strongly non-indicable, then it is locally non-

indicable. Because a strongly non-indicable group G has a non-trivial finitely gener-

ated subgroup H which is perfect. Remember the fact that for an arbitrary group

K and a normal subgroup N ⊴ G, the quotient K/N is abelian if and only if

N ⊇ [K,K]. Therefore, to have a homomorphism ϕ from H to an abelian group,

we need to have ker(ϕ) ⊇ [H,H] = H which gives the image of ϕ trivial. So ϕ

cannot be surjective, and G cannot be locally indicable.

If a group G has a torsion element, then it has a non-trivial finitely generated sub-

group which does not surject to Z, so that G is locally non-indicable. In particular, if

G has a non-trivial finite subgroup, then it is locally non-indicable.

To get an example of a strongly non-indicable group, consider the symmetric group

SZ on Z. The alternating group A5 on {1, 2, 3, 4, 5} is a non-trivial subgroup of SZ

which is finitely generated (because it is finite). Since any element of A5 can be

written as a product of commutators in A5, it is perfect. So, SZ is strongly non-

indicable.

6



We will see in Proposition 54 ii) that Bn is strongly non-indicable for n ≥ 5 (see

2.1.3).

Remark 4. Assume G is not a locally indicable group, and H be a subgroup of G

such that there is no surjective homomorphism from H to Z. This means there is no

surjection from H/[H,H] to Z. Let N be a normal subgroup of G with H ∩N ̸= H

which means there is an element h ∈ H with h ̸∈ N . Then, N ̸⊇ [HN,HN ]

which implies that there is no surjective homomorphism from HN/N to Z. Since

HN/N ≤ G/N , G/N is not locally indicable as well.

The same reasoning applies to strongly non-indicable groups also.

2.1.2 Mapping Class Groups

Dehn gave a generating set for the mapping class groups and introduced the Dehn

twists. Nielsen worked on the classification of mapping class groups, later his work

was improved by Thurston.

Definition 5. For a manifold Σ, the group of isotopy classes of the orientation pre-

serving homeomorphisms of Σ is called the mapping class group of Σ. This group is

denoted by Mod(Σ).

In the special case that the manifold Σ is smooth, the above definition becomes the

following:

The mapping class group Mod(Σ) is π0(Homeo+(Σ)) which is isomorphic to

π0(Diff
+(Σ)) [19].

Definition 6. Let Σ be a surface and z ⊆ Σ be the set of marked points of Σ (i.e., let

the elements of z be distinguished).

• The set Mod(Σ, z) is defined as the set of mapping classes of the surface Σ

which sends an element z ∈ z to an element z̃ of the same set z.

• The subgroup of Mod(Σ) consisting of the mapping classes fixing each z ∈ z

is called the pure mapping class group, denoted by PMod(Σ, z).

We could equivalently define the pure mapping class group as

PMod(Σ, z):=Diff+(Σ, z)/Diff0(Σ, z)

7



where Diff0(Σ, z) denotes the normal subgroup of Diff+(Σ, z) whose elements

are isotopic to identity via an isotopy which fixes the set z.

Theorem 7. (Birman Exact Sequence [19]) For a surface Σ whose Euler character-

istic χ(Σ) < 0 (see Section 2.5) with a marked point z, the following sequence is

exact:

1 → π1(Σ, z) → Mod(Σ, z) = PMod(Σ, z) → Mod(Σ) → 1.

2.1.2.1 Some Mapping Classes

The first example of mapping classes that we will see in this subsection is a Dehn

twist. There are two approaches to Dehn twists, but they are actually the same.

Definition 8. Let T : S1 × [0, 1] → S1 × [0, 1] be defined as T (θ, t) = (θ − 2πt, t).

Let Σ be an oriented surface, and α ⊆ Σ be a simple closed curve with a regular

neighborhood N . For an orientation preserving map ϕ : S1 × [0, 1] → N , the

homeomorphism Tα : Σ → Σ defined as Tα(x) = ϕ ◦ T ◦ ϕ−1(x) for x ∈ N and

Tα(x) = x for x ∈ Σ \N is called a (right) Dehn Twist about α.

Fact 9. The isotopy class of Tα does not depend on the neighborhoodN or the isotopy

class of the curve α. Therefore, this class is an element of Mod(Σ).

We will refer to the class of Tα as Dehn twist as well and denote it by Tα again.

Let us introduce the second approach.

Definition 10. Let Σ be an orientable surface, and α ⊆ Σ be a simple closed curve.

Cut the surface Σ along α. This results in two boundary components on Σ. Twist a

neighborhood of one of these components to the right by 2π radians, then glue along

the curve α. This process gives a homeomorphism which is called a Dehn Twist about

α.

As in Fact 9, the isotopy class of α does not affect the isotopy class of Tα, and the

notation will be the same as explained there.

8



α

b
Tα(b)

Figure 2.1: How the Dehn twist Tα acts on a curve b

Another element of the mapping class group is the class of a hyperelliptic involution.

We will need this concept for the proof of Theorem 65. Let Σg be a genus-g surface.

Let r be a reflection of a regular (4g + 2)−gon through its center. Then, r is a

hyperelliptic involution, and the isotopy class of r is an element of Mod(Σg) [19].

2.1.3 Braid Groups

Although it is first defined by Artin, the concept of a braid appears in older mathe-

matical works as well. For example, Gauss used it while studying knots [18], and

Hurwitz used the concept implicitly in his paper [1] in 1891 .

Unlike Artin who defined a braid group as a collection of strands, Hurwitz considered

a braid group as the fundamental group of a configuration space, and his understand-

ing of braid groups was forgotten till it was reused by Neuwirth, Fadell and Fox in

the articles [5] and [6] in 1962.

We are going to state both definitions here, but we will use the second definition.

First, we shall start with the definition introduced by Artin in 1925. This is the first

rigorous definition for braid groups.

Definition 11. Let p1, p2, . . . , pn be n distinct points in D2, and fi : [0, 1] → D2×[0, 1]

be paths such that fi([0, 1]) are pairwise disjoint for i ∈ {1, 2, . . . , n}, and let σ ∈ Sn

be a permutation. If

• fi(t) ∈ D2 × {t}

• fi(0) = pi × {0}

• fi(1) = pσ(i) × {1},
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then the maps fi are called strands, and the collection (f1, f2, . . . , fn) of the strands

is called a braid.

The product of two braids (f1(t), f2(t), . . . , fn(t)), (g1(t), g2(t), . . . , gn(t)) is defined

as

(f1(t), f2(t), . . . , fn(t)) · (g1(t), g2(t), . . . , gn(t)) =

fi(2t) 0 ≤ t ≤ 1
2

gσ(i)(2t− 1) 1
2
< t ≤ 1

,

see Figure 2.2.

g1 g2 g3 f1 f2 f3 h1 h2 h3

Figure 2.2: The product (h1, h2, h3) of braids (f1, f2, f3) and (g1, g2, g3)

Finally, we can define braid groups.

Definition 12. The group of isotopy classes of braids with the binary operation de-

fined above is called the braid group on n strands which is denoted by Bn.

Let us continue with the second definition. Here, we need to know what a configura-

tion space is.

Definition 13. Let X be a topological space. The set

{(x1, x2, . . . , xn) ∈ Xn : xi ̸= xj whenever i ̸= j}

is called the (nth) configuration space of X , and it is denoted by Confn(X).

By means of this, we can introduce the surface braid groups.

Definition 14. For a surface Σ, the fundamental group Bn(Σ):=π1(Confn(Σ)) is

called a surface braid group. In the special case that Σ = D2, Bn(Σ) is denoted by

Bn.
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A specific type of surface braid group gives us the alternative definition that we were

looking for.

Remark 15. [19] Let z = {z1, z2, . . . , zn} be marked points of D2. Then, Bn
∼=

Mod(D2, z).

Remark 16. Let zi = {z1, z2, . . . , zi} denote the set of the marked points of D2.

(i) Since Bn−1 acts on first n− 1 points (namely, Bn−1 acts on the set zn−1), it stabi-

lizes the nth point in Bn (in other words, Bn−1 fixes the set zn \ zn−1) (see Definition

14).

(ii) By (i),Bn stabilizes the (n+1)st point inBn+1. The inclusion ι from (D2, zn) to the

sphere S2 stabilizes the same point, and ι gives an inclusion Bn+1(D2) ↪→ Bn+1(S
2).

Thus, we have an inclusion Bn ↪→ Bn+1(S
2) which stabilizes the (n + 1)st point in

Bn+1(S
2).

2.1.3.1 Braid Relations

The braid group Bn is generated by the elements σi ∈ π1(Confn(D2)) that change

the places of the ith and the (i + 1)st points counter-clockwise, and fix the remaining

points where i ∈ {1, 2, . . . , n− 1} (see Figure 2.3).

1 2 i i+ 1 n

Figure 2.3: The strand generator σi of Bn

There are some relations between these σi, called the braid relations:

• σiσi+1σi = σi+1σiσi+1 for i ∈ {1, 2, . . . , n− 2}

• σiσj = σjσi for |i− j| > 1.

In fact, Artin [2] showed that the group Bn can be presented as

Bn = ⟨σ1, σ2, . . . , σn−1 : σiσi+1σi = σi+1σiσi+1 for i ∈ {1, 2, . . . , n− 2},

σiσj = σjσi for |i− j| > 1}⟩.
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2.1.4 Lie Algebra

A Lie algebra g over a field F is a vector space g over a field F with a binary opera-

tion, called Lie bracket; [·, ·] : g× g → g such that

• [·, ·] is bilinear, i.e., [aX + bY, Z] = a[X,Z] + b[Y, Z] and [X, aY + bZ] =

a[X, Y ] + b[X,Z] for all a, b ∈ F and for all X, Y, Z ∈ g,

• [X,X] = 0 for all X ∈ g, and

• the Jacobi identity [X, [Y, Z]]+[Y, [Z,X]]+[Z, [X, Y ]] = 0 for allX, Y, Z ∈ g

holds.

Two elements X and Y in the Lie algebra g are said to commute if [X, Y ] = 0.

The Lie algebra g is called commutative if any two elements X and Y of g commute.

A Lie group G is a group, which is also a finite dimensional smooth manifold such

that the group operation G × G → G, (g1, g2) 7→ g1g2 and the inversion G → G,

g 7→ g−1 are smooth (i.e., infinitely many times continuously differentiable) maps.

2.1.4.1 One Parameter Subgroups

Definition 17. Let G be a topological group (see Definition 19). A continuous group

homomorphism ϕ : R → G is called a one parameter subgroup.

In particular, a one parameter subgroup of GLn(R) (or PSLn(R)) is a continuous

group homomorphism ϕ : R → GLn(R) (ϕ : R → PSLn(R) respectively). We will

use this concept in Chapter 3. Sometimes the image G of a one-parameter subgroup

is referred as a one-parameter subgroup, and we will do so.

Remark 18. By definition, it follows that the preimage of a one-parameter subgroup

of any group is abelian.
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2.2 Topology

Definition 19. A topological group G is a topological space which is also a group

such that the group operationG×G→ G, (g1, g2) 7→ g1g2 and the inversionG→ G,

g 7→ g−1 are continuous.

Definition 20. Let X be a topological space and x ∈ X . A continuous

map γ : [0, 1] → X satisfying γ(0) = γ(1) = x is called a loop based at x.

Let X and Y be topological spaces, and f : X → Y be a continuous map.

• If f is a bijection and f−1 is continuous as well, then f is called a homeomor-

phism.

• The spacesX and Y are said to be homeomorphic if there is a homeomorphism

between them.

A subspace of a topological space is called a simple closed curve if it is homeomor-

phic to the unit circle S1.

A closed curve which is not homotopic to a point, boundary component or puncture

is called an essential curve.

Let X, Y be two topological spaces. An embedding f : X → Y is a one-to-one

continuous map from X to Y such that f gives a homeomorphism from X to f(X).

Definition 21. A 2−dimensional manifold is called a surface.

Theorem 22. (Classification of surfaces [19]) Any closed (i.e., compact without

boundary), orientable surface is homeomorphic to the connected sum of a sphere

and g ≥ 0 many tori.

The number g above is called the genus of the surface.

Definition 23. Let M be a manifold.

• A function f : M → R is called differentiable at x ∈ M if it is differentiable

around x in any chart.
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• f is differentiable if it is differentiable at every point x ∈M .

• For a bijection f between two manifolds M,N , if f and f−1 are continuously

differentiable r times, then f is said to be a Cr-diffeomorphism.

2.3 Algebraic Topology

Definition 24. Let X and Y be topological spaces, and f, g : X → Y be two contin-

uous functions.

• A family of maps ht : X → X such that the associated mapH : X×[0, 1] → Y ,

H(x, t) = ht(x) is continuous and satisfies H(x, 0) = h0 = f(x), H(x, 1) =

h1 = g(x) for all x ∈ X is called a homotopy from f to g.

• In this case, the maps f and g are said to be homotopic to each other.

Remark 25. Being homotopic is an equivalence relation. This allows us to give

Definition 26.

Let f, g : X → Y be two embeddings between two topological spaces X, Y .

• A homotopy h : X × [0, 1] → Y with h(x, 0) = f(x) and h(x, 1) = g(x) is

called an isotopy from f to g if h(x, t) is an embedding for every t ∈ [0, 1].

• If there is an isotopy between the spaces X and Y , then they are said to be

isotopic to each other.

Definition 26. Let X be a topological space and γ1, γ2 : [0, 1] → X be two paths

with γ1(1) = γ2(0). The binary operation ∗ is defined as

γ1 ∗ γ2 =

γ1(2t), 0 ≤ t ≤ 1
2

γ2(2t− 1), 1
2
< t ≤ 1

is called concatenation.

Definition 27. For the topological space X , and a point x0 ∈ X . Concatenation

operation and the set π1(X, x0):={[γ] : γ is a loop at x0 in X}, where [γ] denotes

the class of loops at x0 in X homotopic to γ, define a group which is called the

fundamental group of X , and the point x0 is called the base point.
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Definition 28. Let X and X̃ be two topological spaces, and let p : X̃ → X be a

continuous surjection. Suppose that for every x ∈ X , x has an open neighborhood

U ⊆ X such that p−1(U) is a union of open sets which are disjoint and their image

under p is homeomorphic to U .

Then, the space X̃ with the function p : X̃ → X is called a covering space of X .

Definition 29. Let p : X̃ → X be a covering space, and f : X̃ → X̃ be a homeo-

morphism. If the diagram

X̃ X̃

X

f

p p

commutes, then f is called a deck transformation or a covering transformation.

Let f : X → Y be a continuous maps between topological spaces X and Y with

f(x0) = y0. Then, the induced homomorphism f∗ : π1(X, x0) → π1(Y, y0) of the

fundamental groups is defined as f∗([γ]) = [f ◦ γ].

Proposition 30. (Lifting Criterion [15]) Let Y be path-connected and locally-path

connected. For a covering space p : (X̃, x̃0) → (X, x0), a map f : (Y, y0) → (X, x0)

lifts to (X̃, x̃0) if and only if f∗(π1(Y, y0)) ⊆ p∗(π1(X, x0)).

Proposition 31. (Unique Lifting Property [15]) Let p : X̃ → X be a covering space,

f : Y → X be a continuous map where Y is connected, and f̃1, f̃2 : Y → X̃ be two

lifts of f . If f̃1(y′) = f̃2(y
′) for some y′ ∈ Y , then f̃1(y) = f̃2(y) for all y ∈ Y , i.e.,

these two lifts are the same.

Definition 32. A continuous map p : E → B is said to have homotopy lifting prop-

erty with respect to the space X if the existence of a homotopy gt : X → B and a lift

g̃0 : X → E of g0 implies the existence of a lift g̃t : X → E of gt.

E

BX

p

gt

g̃0

g̃t
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A map p : E → B satisfying homotopy lifting property with respect to any space X

is called a fibration.

Covering spaces (see Definition 28), projections, and fiber bundles (see Definition 33)

are fibrations.

Definition 33. Let F,B,E be topological spaces, and p : E → B be a projection

map. If for all b ∈ B, there are an open neighborhood U ⊆ B of b and a homomor-

phism h : p−1(U) → U × F which makes the diagram

p−1(U) U × F

π1p

U

h

commute, where π1 : U × F → U is defined as π1(u, f) 7→ u, then p is said to be a

fiber bundle, B is called the base space, E is said to be the total space, and F is said

to be a fiber.

Let G be a topological group acting faithfully on F (i.e., for g ∈ G and for all f ∈ F ,

gf = f implies that g is the identity element of G). Let U ⊆ B be an open set in

B, and the collection of homeomorphisms {ϕ : U × F → p−1(U)} (ϕ is said to be a

chart over U ) satisfy

• the diagram

U × F p−1(U)

ppU

U

ϕ

commutes for any chart ϕ over U ,

• for all b ∈ B, there is an open neighborhood over which there is a chart,

• for a chart ϕ over U and V ⊆ U open, the restriction of ϕ to V is a chart over

V ,
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• for any two charts ϕ and ϕ′ over U , there is a continuous map θϕ,ϕ′ : U → G

such that ϕ′(u, f) = ϕ(u, θϕ,ϕ′(u)f) for all u ∈ U and for all f ∈ F ,

• {ϕ : U × F → p−1(U)} is maximal with respect to these properties.

Then, G is called a structure group of F .

A principal G−bundle over B is a fiber bundle p : E → B with fiber F = G and

structure group G acting by left translations.

For a fiber bundle, if the fiber is the circle S1, then it is called a circle bundle, and if

the fiber is an n dimensional plane, then it is called an n−plane bundle.

A section of a vector bundle p : E → B is a map s : B → E such that p ◦ s = idB,

namely the map s is a right inverse of p.

Let B be a manifold. Linear functionals on the tangent space at a point p ∈ B are

called tangent covectors.

The space T ∗
pB of all covectors at p is called the cotangent space at p. The union of

all cotangent spaces at all points p ∈ B is a vector bundle called the cotangent bundle,

denoted by T ∗B.

Sections of cotangent bundle T ∗B → B are called differential 1−forms on B. The

set of differential 1−forms is denoted by Ω1(B).

Let p : E → B be a vector bundle over a manifold B, and let E(B) denote the space

of smooth sections of B. A connection in P is a map ∇ : Ω1(B) × E(B) → E(B)

such that

• ∇XY is linear over C∞(B) in X , i.e., ∇fX1+gX2Y = f∇X1Y + g∇X2Y for

f, g ∈ C∞,

• ∇XY is linear over R in Y , i.e., ∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for

a, b ∈ R,

• for f ∈ C∞(B), ∇X(fY ) = f∇XY + (Xf)Y
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where ∇XY denotes the image of (X, Y ) under ∇. Here, ∇XY is called the covariant

derivative of Y in the direction of X .

For the G, p and ∇ as above, consider G as a Lie group with lie algebra g. The

curvature of ∇ is defined as F∇:=d∇+ [∇,∇].

A vector bundle which is endowed with a connection of curvature 0 is called a flat

bundle.

Definition 34. Let X be a connected topological space. A simply connected topolog-

ical space X̃ with a covering space p : X̃ → X is called the universal cover of X .

Let f : X̃ → X be a continuous map between two topological spaces X̃,X . If there

is a finite set C ⊆ X such that restriction of f to X̃ \ f−1(C) with image X \ C is a

covering, then f is said to be a branched covering.

2.3.1 Lefschetz-Hopf Fixed Point Theorem

Let X be a topological space and f : X → X be a continuous map. The sum

L(f) =
∑
i≥0

(−1)iTr(f∗ : Hi(X,Q) → Hi(X,Q)),

where Tr(f∗) denotes the trace of the matrix representation of the induced map f∗,

is called the Letschetz number of f .

Let f : X → X be a continuous map, and x0 ∈ X be a fixed point of f . The index

i(f, x0) of x0 with respect to f is the winding number of x0 about the map f .

Theorem 35. (Lefschetz-Hopf Fixed Point Theorem [20]) If the number of fixed points

of a continuous map f : X → X is finite, then∑
x∈Fix(f)

i(f, x) = L(f)

where i(f, x) denotes the index of x, namely the sum of indices of fixed points of f is

equal to L(f).

2.3.2 CW-complexes

We will use this concept in Subsection 2.5 to define what an Euler characteristic is.
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• Let X0 be a discrete space of points. Call the elements of X0 as 0−cells.

• Let Dn
α be homeomorphic to n−dimensional disk Dn. Attach n−cells Dn

α to

Xn−1 via the continuous maps ϕn
α : ∂Dn

α → Xn−1. That is,

Xn = Xn−1
⋃

ϕn
α(x)∼x

{Dn
α}.

This will give us Xn endowed with the quotient topology.

For the index set I = N or I = {0, 1, . . . , n}, consider the set X =
⋃

k∈I X
k.

The topology on X under which a subset of X is open (respectively closed) if and

only if A ∩Xn is open (respectively closed) for all n is called the weak topology.

The union X =
⋃

k∈I X
k endowed with with weak topology is called a CW-complex.

The space Xk is called the k-skeleton of X .

For a CW-complex X ,

• if X = Xk for some k ∈ N, then X is k−dimensional,

• if X is not k−dimensional for every k ∈ N, then X is infinite dimensional.

2.4 Hyperbolic Geometry

There are several models for the hyperbolic plane. We are going to use only two of

them which are the upper half plane model and disk model.

2.4.1 Upper Half Plane Model

For the rest of the thesis let H2:={(x, y) ∈ R2 | y > 0}, and call it the upper half

plane.

In the upper half-plane model of the hyperbolic plane, the lines are of the following

forms (see Figure 2.4):

• intersection of a circle centered on the x−axis with H2,
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• intersection of a line perpendicular to x−axis with H2.

Figure 2.4: Two types of lines in the upper half plane model of hyperbolic plane

In this setting, two lines are said to be parallel if they do not intersect. The lines that

intersect at infinity are parallel as well.

Remark 36. If we have two points one of which is fixed, as the other point approaches

x−axis, the distance between them tends to infinity.

2.4.2 Disk Model

Let D2 denote the open unit circle {(x, y) ∈ R2 | x2 + y2 < 1}.

In the disk model of the hyperbolic plane, the lines are of the form (see Figure 2.5):

• the intersection of D2 with a circle {(x, y) ∈ R2 | x2+ y2 = r for some r ∈ R}
which intersects the boundary of D2 perpendicularly

• a line passing through the center of the unit circle D2.
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O

Figure 2.5: Lines in disk model of the hyperbolic plane

Here, O denotes the center of D2

Remark 37. If we have two points one of which is fixed, as the other point approaches

the boundary of D2, the distance between them approaches infinity.

Definition 38. A map f : U → V preserving the angle between any two curves

passing through a point u for all u ∈ U is called a conformal map.

An invertible transformation f(z) which is of the form az+b
cz+d

where a, b, c, d ∈ C is

called a linear fractional transformation.

There is a conformal homeomorphism between H2 and D2.

Note that a linear fractional transformation is a conformal mapping. It can be ex-

pressed as a composition of dilations, inversions, rotations, and translations, and it

maps circles or lines to circles or lines.

2.5 Euler Characteristic and Euler Class

Definition 39. Let X be a finite-dimensional CW-complex, and let cellk(X) denote

the number of k−dimensional cells of X . Then, the Euler characteristic χ(X) of X

is
∑

i∈N(−1)icelli(X).

In the special case of a 2−dimensional CW-complex, the above definition turns out
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that:

χ(X) = V − E + F

where V , E, and F stand for the numbers of vertices, edges, and faces of X respec-

tively.

Definition 40. Let B be a surface. Let η be an 2−plane bundle with total space E,

base space B and projection map p. The Euler class (or Euler number) of η is the

cohomology class e(η) ∈ H2(B;Z) which corresponds to u|E under the canonical

isomorphism

p∗ : H2(B;Z) → H2(E;Z)

where u is the fundamental cohomology class, i.e., the unique class such that for

each fiber F = p−1(b), the restriction u|F ∈ H2(F ;Z) is the unique non-zero class

in H2(F ;Z).

Remark 41. Euler characteristic and Euler class are preserved under homotopy

equivalence.

In 1970, Wood [9] proved the following inequality.

Theorem 42. ([21], Milnor-Wood Inequality) A flat orientable circle bundle Êρ over

a closed surface Σg of genus g has the Euler number satisfying |e(Êρ)| ≤ 2g − 2.

This was a generalization of a previous result shown by Milnor [3] in 1957. The

following theorem is equivalent to Milnor’s result.

Theorem 43. ([21], Milnor’s Inequality) A flat linear orientable circle bundle Eρ

over a closed surface Σg of genus g has the Euler number satisfying |e(Eρ)| ≤ g− 1.

As referred in [21], [10] gives a proof of the following special case of Milnor-Wood

Inequality:

Lemma 44. [21] For a closed orientable hyperbolic surface Σg of genus g ≥ 2, the

circle bundle corresponding to the induced action of the group of deck transforma-

tions of the upper half plane H2 on ∂∞H2 has Euler number 2− 2g.
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CHAPTER 3

MAIN RESULTS

3.1 Some Groups of Mapping Classes Not Realized By Diffeomorphisms

Throughout this section, we will use the map F which is described in the following

subsection.

3.1.1 The map F

Let z ∈ Σg be a point. Remember the Birman exact sequence

1 → π1(Σg, z)
F−→ Mod(Σg, z) → Mod(Σg) → 1.

Here, to understand the homomorphism F : π1(Σg, z) ↪→ Mod(Σg, z), let γ ∈
π1(Σg, z), and let −→γ : [0, 1] → Σg be an element of the homotopy class of γ, the

map F pushes z along the path −→γ ∈ γ, and drag the rest of the surface as z goes (see

Figure 3.1). Birman called this map as spin map [19]. Note that F (γ) ∈ Mod(Σg, z).

ba

−→γ

Figure 3.1: How the map F behaves
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The map sending t to −→γ (1−t) can be considered as an isotopy from id{z} to itself. As

stated in Section 3 of [21], there is an isotopy ft : Σg → Σg such that ft(z) = −→γ (1−t)
and f0 = idΣg .

3.1.2 Needed Theorems

We will need the following lemma to prove Proposition 46. For this reason, we need

the setting that we will use in Proposition 46.

Recall that the group G(Σg, z) is the set of all orientation preserving homeomor-

phisms f : Σg → Σg such that z is a fixed point of f and both f , and f−1 are

differentiable at z. There is an epimorphism G(Σg, z) → Mod(Σg, z).

Assume that there is a realization:

G(Σg, z)

Mod(Σg, z).π1(Σg, z)

ϕ

F

We can consider H2 as the universal cover of Σg by endowing Σg with a hyperbolic

metric.

z̃

H2

p

Σg

z
γ

All the orange points above are
projected to orange points below.
All the blue geodesics above are

projected into γ ∈ π1(Σg, z).

Figure 3.2: H2 as the universal cover of Σg

Choose a point z̃ ∈ p−1(z), and a representative ϕγ from F (γ). By Homotopy Lifting
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Property 32, there is a lift of ϕγ which is unique by Unique Lifting Property 31. Let

ϕ̃ : π1(Σg, z) → G(H2, z̃) be the map sending γ to this unique lift. With this setting,

we are ready to state the following lemma.

Lemma 45. ([21], Lemma 3.2) For γ ∈ π1(Σg, z), the homeomorphism ϕ̃γ = ϕ̃(γ) :

H2 → H2 can be extended to the closure H2
= H2 ∪ ∂∞H2 of H2. Moreover, the

action of this extended homeomorphism on ∂H2 is the same as the action of deck

transformation γ corresponding to γ.

Proof. By definition of F (see Subsection 3.1.1), we know that if the point z were

not marked, then F (γ) would be trivial. This means, ϕγ would be homotopic to the

identity in this case. Assume the point z is not a marked point. Remember the map ft

in Subsection 3.1.1. We get ft is a homotopy from the identity to ϕγ with f0 = idΣg

and f1 = ϕγ . By Unique Lifting Property 31, there is a unique lift f̂t of f to H2 with

f̂0 = idH2 . This gives us a new lift ϕ̂γ:=f̂1 of ϕγ . In other words, ϕ could be lifted in

a different way.

We get ϕ̂γ(z̃) = γ−1z̃ where γ is the deck transformation corresponding to γ. By

Unique Lifting Property 31, knowing the image at z̃ tells us the whole lifting. For this

reason,

γ ◦ ϕ̂γ = ϕ̃γ. (3.1)

Therefore, ϕ̂moves every point in the hyperbolic plane H2 by at most a fixed constant.

This makes the distance between a point p ∈ H2 and its image ϕ̂(p) smaller and

smaller as we get near to the boundary at infinity ∂∞H2 of the hyperbolic plane. Thus,

ϕ̃ continuously extends to ∂∞H2, and its action on ∂∞H2 is the same as identity. By

(3.1), the action of ϕ̃γ coincides with γ.

We will need the following proposition, which implies that the surface braid group

Bn(Σg) does not lift to G(Σg, z), and so does not lift to Diff+(Σg, z) as well, to prove

Theorem 52.

Proposition 46. ([21], Proposition 3.1) For a closed surface Σg of genus g ≥ 2

with a marked point z ∈ Σg, the inclusion F (see Subsection 3.1.1) of a finite index

subgroup Γ ≤ π1(Σg, z) does not lift to G(Σg, z).
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Proof. To get a contradiction, assume that there is a realization ϕ : π1(Σg, z) →
G(Σg, z). For an element γ ∈ π1(Σg, z), there is an element f1 ∈ Diff+(Σg, z)

(as described in Subsection 3.1.1) which depends only on γ, and there is a mapping

class F (γ) ∈ Mod(Σg, z) (as described in Subsection 3.1.1). Recall the setting before

Lemma 45, as explained there, there is a unique lift ϕ̃γ of ϕγ , and so a homomorphism

ϕ̃ : π1(Σg, z) → G(H2, z̃) sending γ to ϕ̃γ .

Recall that H2
is the union of the upper half plane, the x−axis and the point at infinity.

This means we can consider H2 \ {z̃} as a half-open annulus. To this open side of the

annulus, attach the space of directions P+Tz̃H2 of the tangent space at z̃, and name

the resulting closed annulus A (see Figure 3.3).

z̃

H2 \ {z̃}

z̃
P+Tz̃H2

A

Figure 3.3: How we get the closed annulus A from H2 \ {z̃}.

The blue circle represents the space of directions of the tangent space at z̃.

By Lemma 45, the map ϕ̃γ extends to H2
for all γ ∈ π1(Σg, z), which leads us

to an action of π1(Σg, z) on H2 \ {z̃}. This means we have an action on the closed

annulus A except on its boundary component which is made by attaching the space of

directions. We can extend this action to whole annulus A because ϕ̃γ is differentiable

at z̃ for all γ ∈ π1(Σg, z), and so we already have an action on the space of directions

which is induced by the map γ 7→ dϕ̃γ|z̃ from π1(Σg, z) to GL+(Tz̃H2). Here, we

used the map ϕ̃γ|z̃ because in order to have the image of the tangent space around the

point z̃ a tangent space around z̃ again, we need a map fixing the point z̃.

By Milnor’s Inequality 43, the circle bundle E1 over Σg induced by this action has

Euler number |e(E1)| ≤ g − 1. On the other boundary component, the action is, as

described in Lemma 45, induced by deck transformations. By Lemma 44, the circle
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bundle E2 induced by this action has Euler number |e(E2)| = 2− 2g.

There is a deformation retraction from A to E1 and a deformation retraction from A
to E2. For this reason, the Euler numbers e(E1) and e(E2) should be the same by the

Remark 41, which implies 2 · |1−g| = |2−2g| = |e(E2)| = |e(E1)| ≤ g−1, but this

cannot happen. Therefore, there cannot exist a lift ϕ. For the case of a finite index

subgroup, the argument is the same.

We will need the following lemma to prove Theorem 52 Part b).

Lemma 47. ([21], Lemma 4.1) By means of the projection map p1 : Confk(Σg) → Σg

defined as

(x1, x2, . . . , xk) 7→ x1,

the configuration space Confk(Σg) becomes a fiber bundle over Σg.

Let π1(p1) : π1(Confk(Σg), (z1, z2, . . . , zk)) → π1(Σg, z1) be the homomorphism

resulted from taking the related part of the long exact sequence of homotopy groups.

Then, this map has a right inverse η : π1(Σg, z1) → π1(Confk(Σg), (z1, z2, . . . , zk)).

Confk(Σg)

Σg

p1 σ

Figure 3.4: The section σ

Proof. Consider a compact T ⊆ Σg surface homeomorphic to a torus with one bound-

ary component, and an essential (i.e., not homotopic to a marked point or a boundary

component) simple closed curve C ⊆ T with zi ∈ C for all i ∈ {1, 2, . . . , k}. Iden-

tify the remaining part, Σg \ int(T ) with a point, and call the resulting torus T. Project

this torus to C. Figure 3.5 shows this process.
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Σg

T
∂T

C

z1
z2

zk

z1
z2

zk C

T

Σg \ int(T )
z1
z2

zk

The curve C as
the image of Σg

under the map a

z1
z2

zk

Figure 3.5: The map a : Σg → C

In this way, we get a map a : Σg → C fixing the curve C pointwise. Let ri be the

rotation of C sending z1 to zi, and let ι : C ↪→ Σg be the inclusion map. Define

αi : Σg → Σg to be the composition ι ◦ ri ◦ a.

Fact 48. The followings hold.

• The image of C under the map αi is C for all i ∈ {1, 2, . . . , k} by definition.

• αi(z1) = zi for all i ∈ {1, 2, . . . , k} by definition.

• The restriction of α1 to C is the identity map by its definition.

• αi : Σg → Σg has no fixed points if i ̸= 1. Because

– If a point z ∈ Σg is not in the curve C, then since it is mapped to C, its

image cannot be z anymore.

– If the point z ∈ Σg is in C, then it is first mapped to itself by the map a,

and then rotated which makes the image of z different than itself again.

• For all x ∈ Σg, αi(x) ̸= αj(x) if i ̸= j because after mapping the surface Σg to

the curve C via the map a, the rotations ri and rj rotate the point x in different

fashions.

Let σ(x):=(x, α2(x), . . . , αk(x)) be a map.

• The image of σ is in fact the configuration space Confk(Σg) because there

are no two components αi(x), αj(x) with i ̸= j and αi(x) = αj(x) for some

x ∈ Σg by Fact 48.
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• p1(σ(x)) = x by definition.

This makes the map σ : Σg → Confk(Σg) a section of the fiber bundle

p1 : Confk(Σg) → Σg.

Then, there is a homomorphism

η : π1(Σg, z1) → π1(Confk(Σg), (z1, z2, . . . , zk))

induced by the map σ with π1(p1) ◦ η is the identity map.

Proposition 49. [21] For a surface Σg of genus g ≥ 6, there is a diffeomorphism

τ : Σg → Σg of order o(τ) = 3 whose number of fixed points |Fix(τ)| is greater than

or equal to 2 such that the quotient Σg/⟨τ⟩ has genus h ≥ 2.

Proof. For a proof given in a more general way, see the Fact of Case 3 in the proof of

Theorem 1.2 in [21]. We will prove the proposition by using two different ways.

Case 1: g = 3h+ 2 for some integer h ≥ 2

Let us identify the xy−plane with the complex plane C, let T be the equilateral trian-

glular region in this plane with vertices vk = ei
2π
3
k for k ∈ {1, 2, 3}. Let us identify

the z = 5 plane with the complex plane C and consider the triangular region with ver-

tices vk = ei
2π
3
k for k ∈ {1, 2, 3}. For k ∈ {1, 2, 3}, consider the line segments vkvk

between the vertices of these two triangular regions. For all i ∈ {1, 2, 3} and for all

j ∈ {1, 2, . . . , h}, add the arcs lij starting at vi ending at vi which intersect the line seg-

ment vkvk only at the points vi, vi, and which gives for any two j1, j2 ∈ {1, 2, . . . , h},

the intersection lij1 ∩ lij2 = {vi, vi}. Call the resulting object Σg. We can choose lij
so that Σg is invariant under the rotation τ by 2π

3
−radians about z−axis as it can be

seen in the Figure 3.6. Let Σg be the boundary of a tubular neighborhood of Σg. The

diffeomorphism τ induces a diffeomorphism τ : Σg → Σg of order 3 with 4 fixed

points, and Σg/⟨τ⟩ is an orientable surface of genus h ≥ 2 as we needed.
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Σg

Figure 3.6: Σg in Case 3

Case 2: g = 3h+ 1 for some integer h ≥ 2

Let h ̸= 2. Take Σg in the previous case. Identify z = −5 plane with the complex

pane C and consider the equilateral triangular region whose vertices are v̂k = ei
2π
3
k

for k ∈ {1, 2, 3}. Draw the line segments vkv̂k for k ∈ {1, 2, 3}. Call the resulting

object Σ̂g (see Figure 3.7). Define τ same as the case before. Take the boundary of a

regular neighborhood of Σ̂g say Σg. Similar to the case before, Σg is invariant under

τ , τ has 6 fixed points on Σg, and Σg/⟨τ⟩ is an orientable surface of genus h > 2.

Σ̂g

Figure 3.7: Σ̂g in Case 2, x ̸= 2

To prove the case g = 7, consider a regular 30−gonal region T as in Figure 3.8.

Identify its antipodal edges to get a genus-7 surface Σ7. Define the diffeomorphism

τ̂ on T as the rotation by 2π
3

about the center O of T . Then, τ̂ is of order 3. τ̂(x1) =

x1, τ̂(x2) = x2, τ̂(O) = O and these are the only fixed points of τ̂ . τ̂ induces a

diffeomorphism τ : Σg → Σg which has 3 fixed points, the images of O, x1 and x2

under T → Σg.
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b

x1
x2a

x2

c
x1

dx2

O

b

x2

x1 a

x1

c
x2

d x1

Figure 3.8: Regular 30-gonal region T

Σ7 → Σ7/⟨τ⟩ is a 3− 1 branched cover branching on 3 points. Then,

χ(Σ7 \ {x1, x2, O}) = 3χ(Σ7/⟨τ⟩ \ {τ(x1), τ(x2), τ(O)}).

Say Σg/⟨τ⟩ is a genus-k surface. We have 2− 2 · 7− 3 = 3(2− 2k− 3) which gives

the fact that Σ7/⟨τ⟩ is a genus-2 surface.

Case 3: g = 3h for some integer h ≥ 2

Similar to Case 2 before, consider the 4g−gonal region P whose edges are identified

as in the Figure 3.9.

a
K

b
K

K

aK
b

K

c
K
d
K
c

K d
K

O

Figure 3.9: Regular 4g−gonal region P

This gives us a genus-g surface Σg. Let τ̂ : P → P be the diffeomorphism defined as

the rotation by 2π
3

radians about O. Then, the only fixed points of τ̂ on P are O and

K. τ̂ induces a diffeomorphism τ : Σg → Σg which has 2 fixes points which are the

images of the fixed points of τ̂ under the map P → Σg.
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Σg → Σg/⟨τ⟩ is a 2− 1 branched cover branching at 2 points. Then,

χ(Σg \ {K,O}) = 2χ(Σg/⟨τ⟩ \ {τ(K), τ(O)}).

Let Σg/⟨τ⟩ be of genus k. Then, 2 − 2g − 2 = 2(2 − 2k − 2) which gives g = 2k.

Since g > 6, Σg/⟨τ⟩ has genus k ≥ 2.

Lemma 50. ([21], Remark of Case 3 of Proof of Theorem 1.2) For the diffeomorphism

τ : Σg → Σg mentioned in Proposition 49, and the mapping class T corresponding

to τ , if we assume that the map ψ from the centralizer C(T ) to Diff+(Σg) is a lifting,

then ψ(T ) and τ are conjugate.

Let C(τ, z) denote the subgroup of C(τ) whose elements fix the set z pointwise.

Lemma 51. ([21], Lemma 4.2) For the diffeomorphism τ and z the set of projections

of the fixed points of τ , the homomorphism α given by the homeomorphisms of Σg/⟨τ⟩
fixing z induced by the diffeomorphisms f ∈ C(τ) (for more details about these, see

the proof of Part (a) of Theorem 52), the image α(C(τ, z)) under α of the subgroup

C(τ, z) is a subset of G(Σg/⟨τ⟩, z).

Proof. There is a conformal structure which makes τ biholomorphic. For a fixed

point x of τ , since τ is of order 3, there are coordinates ζ around x with τ(ζ) = ω · ζ
where ω is the third root of unity. Note that by o(ω) = 3, {1, ω} span C as a real vector

space. Let f ∈ C(τ, z), consider the derivative dfx : TxΣg → TxΣg of f around x.

Since f(τ(ζ)) = τ(f(ζ)), f(ωζ) = ω(f(ζ)). So, dfxω = ωdfx. This means dfx

commutes with any element of C as {1, ω} spans C. So, it is differentiable. Then,

considering the projections of the surface Σg and its tangent space around the point x,

and considering the compositions with the projection p to Σg/⟨τ⟩ of the maps f and

dfx, we get the derivative dα(f)p(x) of the map α(f) : Σg/⟨τ⟩ → Σg/⟨τ⟩ induced by f

at the projection of the point x. This means α(f) is differentiable with a differentiable

inverse at p(x) satisfying α(f)(p(x)) = p(x). Since x was an arbitrary fixed point,

this property of α(f) holds for any p(x) ∈ z. Thus, α(C(τ, z)) ⊆ G(Σg/⟨τ⟩, z).
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3.1.3 Morita’s Non-lifting Theorem

In his paper [13], Morita stated the following theorem for the surface Σg of genus

g ≥ 18, and later in [16], he showed that g ≥ 5 is enough to get the same result

instead of 18. Here, we will prove the cases for g ≥ 6 with an arbitrary number of

marked points and g ≥ 2 with at least one marked point in a different way.

Theorem 52. ([21], Theorem 1.2) Let Σg be a surface of genus g, z be the set of

marked points of Σg. Then,

(a) If g ≥ 6, the exact sequence

0 → Diff0(Σg, z) → Diff+(Σg, z) → Mod(Σg, z) → 0

does not split.

(b) If g ≥ 2 and the cardinality |z| ≥ 1, then the above result holds. Moreover,

no finite index subgroup of Mod(Σg, z) lifts to Diff+(Σg, z). (Also, no finite index

subgroup of Mod(Σg, z) lifts to G(Σg, z1).)

Proof. (b) Note that the group Diff+(Σg, z) is a subgroup of G(Σg, z), so the group

Mod(Σ, z) does not lift to Diff+(Σg, z) by Proposition 46. This proves the case for

|z| = 1 and g ≥ 2.

Assume g ≥ 2, |z| ≥ 2. By means of the projection map p1 : Confk(Σg) → Σg

defined as (x1, x2, . . . , xk) 7→ x1, the configuration space Confk(Σg) becomes a fiber

bundle over Σg. By taking the related part of the long exact sequence of homotopy

groups, we get a homomorphism

π1(p1) : π1(Confk(Σg), (z1, z2, . . . , zk)) → π1(Σg, z1).

By Lemma 47, we know that this homomorphism has a right inverse. Let

z⃗:=(z1, z2, . . . , zk) ∈ Confk(Σg).

Forgetting all marked points except z1 gives the same exact sequence as we have seen

in Subsection 3.1.1 before, and if we forget all the marked points, the Birman Exact

Sequence (see Theorem 7) becomes:

1 → π1(Confk(Σg), z⃗) → PMod(Σg, z) → Mod(Σg) → 1.

Considering these sequences with the maps η and π1(p1) before, we get:
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1 π1(Confk(Σg), z⃗) PMod(Σg, z) Mod(Σg) 1

1 π1(Σg, z1) Mod(Σg, z1) Mod(Σg) 1.

π1(p1) =η

In particular, the map between groups π1(Confk(Σg), z⃗) and PMod(Σg, z) is injec-

tive. Let G ≤ Mod(Σg, z) be a finite index subgroup. Then, PMod(Σg, z)∩G is a fi-

nite index subgroup of PMod(Σg, z). Let Γ be the inverse image of PMod(Σg, z)∩G
in π1(Confk(Σg), z⃗). By the map between π1(Confk(Σg), z⃗) and PMod(Σg, z) being

injective, Γ has finite index in π1(Confk(Σg), z⃗). Then, the image π1(p1)(Γ) of the

group Γ under the function π1(p1) has finite index in π1(Σg, z1). Since there exists a

right inverse η of the map π1(p1), if the group G lifts to Diff+(Σg, z), then π1(p1)(Γ)

would lift to Diff+(Σg, z). But this cannot happen by Proposition 46, and by the fact

that Diff+(Σg, z1) ≤ G(Σg, z1) .

(a) By Part b), the case of g ≥ 6 and |z| ≥ 1 follows. So, assume |z| = 0. By Propo-

sition 49, there is a diffeomorphism τ : Σg → Σg of order 3 such that the number of

fixed points of τ is greater than or equal to 2 and that Σg/⟨τ⟩ is of genus at least 2.

Assume that the centralizer C(T ) lifts to Diff+(Σg) via the map ψ : C(T ) →
Diff+(Σg), where T is the class of the diffeomorphism τ in Mod(Σg). Then, the

order of ψ(T ) is 3. Since T is the mapping class corresponding to τ and since ψ is a

lifting, ψ(T ) and τ are isotopic. By Lemma 50, these two are conjugate. So, we may

assume without loss of generality that ψ(T ) = τ .

Let p : Σg → Σg/⟨τ⟩ be the projection map, and let z = {z1, z2, . . . , zk} be the set

of projections of the fixed points of Σg to Σg/⟨τ⟩. Any f ∈ C(τ) induces a map

K : Σg/⟨τ⟩ \ z → Σg/⟨τ⟩ \ z with x, τ k(x) ∈ Σg \ Fix(τ) giving the same image

under K for k ∈ Z. Extending K gives us a homeomorphism K of Σg/⟨τ⟩ fixing z.

Thus, we can define a homomorphism α : C(τ) → Homeo+(Σg/⟨τ⟩, z) defined as

α(f) = K. By definition of α, we have ker(α) = ⟨τ⟩. We had ψ : C(T ) → C(τ)

before. By Lemma 51, α(C(τ, z)) ⊆ G(Σg/⟨τ⟩, z). Since ψ(T ) = τ , we have ψ :

C(T )/⟨T ⟩ → C(τ)/⟨τ⟩. Since ⟨τ⟩ is the kernel of α, by considering the composition

α ◦ ψ, we get an action C(T )/⟨T ⟩ → Homeo+(Σg/⟨τ⟩, z).
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Via the lifting ψ, we can identify C(T )/⟨T ⟩ with C(τ)/⟨τ⟩. Remember from the

definition of the map α that a diffeomorphism f ∈ Diff+(Σg) commuting with τ

induces a homeomorphism Σg/⟨τ⟩ → Σg/⟨τ⟩ fixing z setwise.

Consider the image of C(T )/⟨T ⟩ under the map

C(T )/⟨T ⟩ → Homeo+(Σg/⟨τ⟩, z) → Mod(Σg/⟨τ⟩, z).

If the image of an element of Homeo+(Σg/⟨τ⟩, z) under the map

Homeo+(Σg/⟨τ⟩, z) → Mod(Σg/⟨τ⟩, z)

is the identity, then this element is either the identity in Homeo+(Σg/⟨τ⟩, z) or τ or

τ 2. But, all of these three elements correspond to the identity in C(T )/⟨T ⟩. So, there

is a subgroup G of Mod(Σg/⟨τ⟩, z) that can be identified with C(T )/⟨T ⟩.

Let Γ:=G ∩ PMod(Σg/⟨τ⟩, z). Then, by both G and PMod(Σg/⟨τ⟩, z) being of

finite index, Γ is of finite index in Mod(Σg/⟨τ⟩, z). For each x ∈ C(T ), xT =

Tx, so ψ(x)ψ(T ) = ψ(T )ψ(x). This implies that ψ(x) ∈ C(ψ(T )). Therefore,

ψ(C(T )) ⊆ C(ψ(T )) = C(τ) as we assumed ψ(T ) = τ . Thus, the image of Γ

under ψ is contained in C(τ). Moreover, since Γ ⊆ PMod(Σg/⟨τ⟩, z), ψ(Γ) should

be contained in C(τ, z). By Lemma 51, α(ψ(Γ)) is a subset of G(Σg/⟨τ⟩, z). This

means a finite index subgroup of Mod(Σg/⟨τ⟩, z) lifts to G(Σg/⟨τ⟩, z) where Σg/⟨τ⟩
is a surface of genus h ≥ 2 with at least 1 marked points which contradicts the note in

parenthesis of Case (b) of this theorem. Therefore, there cannot be such a lift ψ.

3.2 On Non-realizability of Braid Groups By Diffeomorphisms

3.2.1 Needed Theorems

As stated in [22], Theorem 4.1 (iii) of [14] implies that:

Theorem 53. ([22], Theorem 3.6) Let zn be the set of n marked points in the closed

disc D2.

(a) The inclusion map (D2, zn) ↪→ (Σ, zn) induces an injection Bn ↪→ Bn(Σ) where

the surface Σ is not the sphere S2.
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(b) If Σ = S2, identify Bn with Mod(D2, zn) via the isomorphism Bn
∼= Mod(D, zn)

in Remark 15. Let ∆ denote the Dehn twist of a boundary parallel curve in D2. Then,

the inclusion (D, zn) ↪→ (S2, zn+1) induces a homomorphism ϕ : Bn → Bn+1(S
2)

such that ker(ϕ) ⊆ ⟨∆⟩ and ker(ϕ) is contained in the center of Bn.

Proposition 54. ([22], Proposition 3.4)

(i) For n ≥ 5, the set

S = {σiσ−1
i+1 : 1 ≤ i ≤ n− 2}

generates [Bn, Bn], and any two σiσ−1
i+1, σjσ

−1
j+1 ∈ S are conjugate in [Bn, Bn].

(ii) ([22], Proposition 3.4 and [7], Corollary 2.2) For n ≥ 5,

[Bn, Bn] = [[Bn, Bn], [Bn, Bn]].

Therefore, Bn is strongly non-indicable for n ≥ 5.

Proof. (i) Let σi ∈ Bn denote the braid which interchanges the ith and the i + 1st

points for 1 ≤ i < n, and let σn be the braid that which interchanges the nth and

the first points of the configuration space. Let ⟨S⟩ denote the normal closure of ⟨S⟩.
Since the map A : Bn → Z sending

∏n
i=1 σ

mi
i to

∑n
i=1mi is the abelianization map,

S = {σiσ−1
i+1 : 1 ≤ i ≤ n − 1} is a subset of [Bn, Bn]. Consider the following

numbers i, i+ 1, i+ 3, j modulo n. Since any two σi, σj of σ1, . . . , σn are conjugate,

the quotient Bn/⟨S⟩ is abelian. Because σiσ−1
j ∈ ⟨S⟩ implies σi⟨S⟩ = σj⟨S⟩. So, if

⟨S⟩ is a normal subgroup of Bn, then S generates [Bn, Bn].

Claim: The group ⟨S⟩ is a normal subgroup of Bn.

Proof of the claim: Note that n ≥ 5 and |i− (i+ 3)|, |(i+ 1)− (i+ 3)| ≥ 2, so σi+3

commutes with σi, σi+1.

For all i, j we have σiσ−1
j ∈ ⟨S⟩ because if i ≤ j, then

σiσ
−1
j = (σiσ

−1
i+1)(σi+1σ

−1
i+2) . . . (σi+nσ

−1
j ),

and if i > j, then σiσ−1
j = ((σjσ

−1
j+1)(σj+1σ

−1
i+2) . . . (σj+mσ

−1
i ))−1.

Moreover, σ−1
i σi+1 ∈ ⟨S⟩ because

σ−1
i σi+1 = σi+3σ

−1
i+3σ

−1
i σi+1 = σi+3σ

−1
i σi+1σ

−1
i+3 ∈ ⟨S⟩.

So, similar to the reasoning above, any σ−1
i σj is in ⟨S⟩.
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Then,

σj(σiσ
−1
i+1)σ

−1
j = (σjσ

−1
i+3)(σi+3σiσ

−1
i+1σ

−1
j )

= (σjσ
−1
i+3)(σiσ

−1
i+1)(σi+3σ

−1
j )

and σ−1
j (σiσ

−1
i+1)σj = (σ−1

j σi)(σ
−1
i+1σj). Thus, ⟨S⟩ ⊴ Bn because σjσ−1

i+3, σiσ
−1
i+1,

σi+3σ
−1
j , σ−1

j σi,σ−1
i+1σj are all in ⟨S⟩. This proves the claim.

To complete the proof of part (i), we need to show that all the elements of S are

conjugate in [Bn, Bn]. By braid relations (see Section 2.1.3.1),

(σiσi+1σi+2)σiσ
−1
i+1(σiσi+1σi+2)

−1 = σi+1σ
−1
i+2.

Note that (σiσi+1σi+2σ
−3
i+3) ∈ [Bn, Bn]. As σi+3 commutes with σi and σi+1,

(σiσi+1σi+2σ
−3
i+3)σiσ

−1
i+1(σiσi+1σi+2σ

−3
i+3)

−1 = σi+1σ
−1
i+2

which gives the elements σiσ−1
i+1 and σi+1σ

−1
i+2 are conjugate in [Bn, Bn].

(ii) Need to write σiσ−1
i+1 ∈ S as a commutator in [Bn, Bn]. Since n ≥ 5, there

is some j that makes σj commute with σi, σi+1. Then, by braid relations (Section

2.1.3.1) again,

σiσ
−1
i+1 = (σiσi+1σi)(σ

−1
i σ−1

i+1σ
−1
i+1)

= (σi+1σiσi+1)(σ
−1
i σ−1

i+1σ
−1
i+1)

= [σi+1σiσ
−2
j , σi+1σ

−1
j ].

Since ⟨S⟩ = [Bn, Bn], we have [Bn, Bn] is perfect.

Remark 55. ([7], Corollary 2.2) In addition to Proposition 54, any homomorphism

from [Bn, Bn] to an abelian group is trivial.

Lemma 56. ([22], Lemma 3.9) For a group G generated by elements τ1, . . . , τn such

that

(1) τi are mutually conjugate for all i = 1, . . . , n

(2) There is k ≥ 2 with [τi, τj] = 1 for |j− i| ≥ k (where | · | is the distance in R/nZ),

and for n ≥ 2k + 1, every homomorphism f : G→ GL+
2 (R) has abelian image.

Proof. In this proof, we will need Subsection 2.1.4.1. By Remark 18, the preimage

of a one-parameter subgroup of the projective linear group PSL2(R) in GL+
2 (R) is
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abelian. Let π denote the projection from GL+
2 (R) to PSL2(R). If we show that the

image of the projection f :=π ◦ f : G → PSL2(R) to PSL2(R) is contained in a

one-parameter subgroup, then we are done.

Let τi denote f(τi). By assumption (1) we know any two τi, τj are conjugate for all

i, j = 1, . . . , n whenever τi, τj ̸= I . And if τi = I for some i = 1, . . . , n, then all its

conjugates, namely all other τj’s, should be I . Thus, for a non-trivial homomorphism

f , we have τi ̸= I , for all i = 1, . . . , n.

Assume the image of f is not contained in a one-parameter subgroup. This means that

there are τi, τj which do not commute. By relabelling if necessary, we may assume

that i = 1 and 2 ≤ j ≤ k is the minimal index which gives τ1, τj do not commute.

Claim: j = 2 for some relabelling.

Proof of the claim: Assume otherwise. Then, either τj and τj−1 commute or not.

Case 1: τj and τj−1 do not commute. Then, by relabelling again, we get τ1, τ2 do not

commute, i.e., j = 2.

Case 2: τj and τj−1 commute. Since j was the minimum index giving τj does not

commute with τ1, τj−1 should commute with τ1. Thus, τ1, τj ∈ CPSL2(R)(τj−1). Note

that CPSL2(R)(τj−1) ⊆ PSL2(R), and PSL2(R) is a one-parameter subgroup, i.e.,

there is a continuous group homomorphism ϕ : R → PSLn(R), which implies τ1, τj

should commute (recall Section 2.1.4.1 here), contradicting the assumption. Hence,

j = 2 which proves the claim.

By assumption (2) and the fact that n ≥ 2k + 1, τk+2 commutes with τ1 and τ2.

Therefore, τ1, τ2 ∈ CPSL2(R)(τk+2) which means τ1, τ2 commute, contradicting the

assumption that the image of f is not contained in a one-parameter subgroup.

Plugging k = 2 and assigning τi = σi (where σi is as described above) in this lemma,

we get the following.

Lemma 57. ([22], Lemma 3.8) For n ≥ 5, every homomorphism f : Bn → GL+
2 (R)

has abelian image.

Theorem 58. ([22], Thurston Stability Theorem) LetM be a manifold and let x ∈M

be given. For a diffeomorphism g of M fixing x, denote the derivative by (Dg)x ∈
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GL(TxM). Then, the group G = {g ∈ Diff+(M) : g(x) = x, (Dg)x = I} is locally

indicable (and so are any subgroup of G).

c2 c4 c2g
c3c1 c2g+1 ι

Figure 3.10: Figure of Lemma 61

Lemma 59. ([22], Lemma 4.1) Suppose that there is a realization

Diff+(Σg)

Mod(Σg).Mod(Σg)

σ

Then, the number of fixed points |Fix(σ(ι))| = 2+2g where ι denotes the class of the

hyperelliptic involution (see Figure 3.10 where ι is a diffeomorphism in the class ι).

Proof. Suppose that the diffeomorphism σ(ι) has n fixed points, say x1, x2, . . . , xn.

Consider the induced branched cover Σg → S2. Removing these fixed points, we get

a 2−fold covering Σg \ {x1, x2, . . . , xn} of S2 \ {σ(ι)(x1), σ(ι)(x2), . . . , σ(ι)(xn)}.

Thus we have the equality

χ(Σg \ {x1, x2, . . . , xn}) = 2χ(S2 \ {σ(ι)(x1), σ(ι)(x2), . . . , σ(ι)(xn)})

between the Euler characteristics. So, 2− 2g− n = 2(2− n), and hence, the number

of fixed points of σ(ι) is n = 2 + 2g.

Another way: Let h be a Riemannian metric on Σg. Since ι is hyperelliptic involution,

it is of finite order, so we can consider the metric h + (σ(ι))∗h + ((σ(ι))2)∗h +

. . . + ((σ(ι))n−1)∗h which is σ(ι)−invariant where n = o(σ(ι)). Therefore, we can

consider σ(ι) as an isometry on Σg in this metric. Let x ∈ Σg be any fixed point of

σ(ι). Since σ(ι) is an isometry, it is determined by its derivative at x. This derivative is

a 2×2 orthogonal matrix whose determinant is 1 by σ(ι) being orientation preserving.
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By σ(ι) being non-trivial, its derivative at x is non-trivial and so x is an isolated fixed

point of index 1. By their indices being equal to 1, if we can find the sum of the

indices of the fixed points, we get the number of fixed points. By x being arbitrary,

all the fixed points of σ(ι) are isolated of the same index. By Lefschetz-Hopf Fixed

Point Theorem 35, sum of the indices of fixed points is the same as the Lefschetz

number which is:

L(σ(ι)) =
2∑

i=0

(−1)iTr((σ(ι))∗ : Hi(Σg,Q) → Hi(Σg,Q)) = 2 + 2g.

So, |Fix(σ(ι))| = 2 + 2g.

Remark 60. ([22], Corollary 4.2) Let x ∈ C(σ(ι)) be an arbitrary element, and let

y ∈ Fix(σ(ι)). Then, (σ(ι)) ◦ x(y) = x(σ(ι))(y) = x(y), i.e., x(y) ∈ Fix(σ(ι)).

Since |Fix(σ(ι))| = 2g + 2, we can consider the symmetric group on Fix(σ(ι)) as

S2g+2, and get a permutation representation ρ : C(σ(ι)) → S2g+2 of C(σ(ι)) on

Fix(σ(ι)). In other words, the elements of C(σ(ι)) can be represented as permuta-

tions on Fix(σ(ι)).

Let α, α′ ∈ C(σ(ι)) be isotopic, then ρ(α) = ρ(α′). For a proof of this, see the proof

of Lemma 4.5 of [22].

Lemma 61. ([22], Lemma 4.3) For the genus g of Σg is greater than or equal to 2,

there is a non-indicable subgroup B ≤ C(ι) which is isomorphic to a quotient of

B2g+2 (here ι denotes the class of the hyperelliptic involution ι in Figure 3.10 is a

diffeomorphism in the class ι).

Proof. Let ci be simple closed curves as in Figure 3.10. Then, ci and ci+1 intersect

only at one point transversely for all i ∈ {1, 2, . . . , 2g}, and ci and cj does not inter-

sect for |i− j| ≥ 2. Therefore, the Dehn twists Tci satisfy the braid relations. Hence,

the group B = ⟨Tci : i ∈ {1, 2, . . . , 2g + 1}⟩ ⊆ Mod(Σg) is a non-trivial quotient

of B2g+2. Note that g ≥ 2 implies 2g + 2 ≥ 6 and so B2g+2 is non-indicable (by

Proposition 54). By being a quotient of a non-indicable group, B is non-indicable (by

Remark 4). ι fixes each ci, so Tci ∈ C(ι) for each i, and B ≤ C(ι).

Remark 62. ConsiderB as a quotientB2g+2/N . Then, letB′ be the restriction of the

quotientB toB2g+1, i.e., letB′:=B2g+1/(N ∩B2n+1). By being a non-trivial quotient
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of a strongly non-indicable subgroup, B′ is also strongly non-indicable for g ≥ 2. By

Remark 16, B2g+1 fixes a point in B2g+2. Being the quotients of these groups, B′ fixes

a point in B ≤ C(ι). Considering the images of B and B′ under σ, σ(B′) fixes a

point in σ(B) ≤ σ(C(ι)) ≤ C(σ(ι)). Therefore, the action of B′ on Fix(σ(ι)) has a

fixed point.

Lemma 63. ([22], Lemma 4.5) Let µ : B2g+2 → S2g+2 be the homomorphism which

sends the element changing the places of ith and i + 1st points in the configuration

space σi ∈ B2g+2 to the permutation (i i + 1) ∈ S2g+2. Let θ : B2g+2 → B =

B2g+2/N be the map sending σi to the Dehn twist Tci about the curve ci in the group

B (see Figure 3.10 for the curve ci). Since σj generate B2g+2 and Tcj generate the

group B (see the proof of Lemma 61), the map θ is a homomorphism from B2g+2 to

B.

Then, the diagram

B2g+2

B

S2g+2

θ ρ ◦ σ

µ

commutes.

Proof. Note that any two realizations of Tci are isotopic. By Remark 60, their image

should be the same. This means that finding the image of a realization of Tci under

ρ gives the image of any realization of Tci . Take a realization T̃ci of Tci which is

invariant under the diffeomorphism σ(ι) and whose support is a neighborhood of ci.

Then, the image of T̃ci under ρ is (i i+1) which is the same as the image of σi under

µ, in other words, the diagram commutes.

The following is a version of Proposition 46 for a compact surface Σ for a different

number n of marked points.

Theorem 64. ([22], Theorem 1.1) Let Σ be a compact surface, and let z be the set of

marked points of Σ with |z| = n. Recall the map F in the Section 3.1.1.

(a) If the boundary ∂Σ = ∅, then F : Bn(Σ) → Mod(Σ, z) is not realized by C1
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diffeomorphisms for all n ≥ 6.

(b) If the boundary ∂Σ ̸= ∅, then F : Bn(Σ) → Mod(Σ, z) is not realized by C1

diffeomorphisms for all n ≥ 5.

Proof. (a) Assume that ∂Σ = ∅ and that for n ≥ 6, there is a lift

Diff+(Σ, ∂Σ, z)

Mod(Σ)Bn(Σ)

σ

F

where Diff+(Σ, ∂Σ, z) denotes the group of C1 diffeomorphisms f from Σ to Σ pre-

serving z setwise such that the restriction of f to ∂Σ is the identity.

Then, by Theorem 53 (b), there is a non-trivial homomorphism

ψ : Bn−1 → Mod(Σ, z).

For any subgroupH ofBn−1 witnessing the non-indicablity ofBn−1 (in particular, by

Proposition 54 (ii), H can be taken as [Bn−1, Bn−1]), H ∩ker(ψ) ̸= H , so by Remark

4, Bn−1/ker(ψ) is non-indicable. Therefore, the image ψ(Bn−1) ∼= Bn−1/ker(ψ) of

Bn−1 for n ≥ 6 is also non-indicable. Thus, Mod(Σ, z) ⊇ ψ(Bn−1) is non-indicable.

AsBn−1 stabilizes z\zn−1 (by Remark 16 (i)), σ(Bn−1) fixes some point x ∈ z\zn−1.

Let D : Bn−1 → GL+
2 (R) be the derivative at x. Since for n ≥ 5, every homomor-

phism f : Bn → GL+
2 (R) should have abelian image (by Lemma 57), the perfect

subgroup [Bn−1, Bn−1] should be in the kernel of D. Then, by Thurston Stability

Theorem 58, [Bn−1, Bn−1] should be locally indicable which is not (by Proposition

54).

(b) ∂Σ ̸= ∅, i.e., n ≥ 5 In this case, Mod(Σ, z) is still strongly non-indicable, and by

Remark 16 (ii), the lift σ(Bn) fixes some point x ∈ zn+1 \ z. Let D : Bn → GL+
2 (R)

denote the derivative at x. By Lemma 57, [Bn, Bn] ⊆ ker(D), and by Thurston

Stability Theorem 58 [Bn, Bn] is locally indicable which is not the case.
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3.2.2 Morita’s Non-lifting Theorem

Here, we prove Part (b) of Theorem 52 in a different way for an arbitrary number of

marked points of Σg.

Theorem 65. ([22], Theorem 1.2) Let Σg be a closed surface of genus g. For g ≥ 2,

the group Mod(Σg) does not lift to Diff+(Σg).

Proof. Recall that for a realization σ : Mod(Σg) → Diff+(Σg) has a stongly non-

indicable subgroup σ(B′) ≤ Diff+(Σg) where B′ is the image of the abovementioned

non-indicable subgroupB inB2g+1, i.e., it is a quotient ofB2g+1 (see Remark 62). So,

B′ is non-indicable by Remark 4, and σ(B′) is the image of B′ under σ. Moreover,

σ(B′) acts on Σg with a global fixed point p ∈ Σg (see Remark 62).

Since σ(p) = p, we can consider the derivative Dp : σ(B
′) →GL+

2 (R) at p. We know

that the image of B2g+1 under Dp ◦ σ : B2g+1 →GL+
2 (R) is abelian by Lemma 57.

By being a quotient of this group, B′ should have abelian image under this map.

Let P ≤ B′ be a subgroup of B′ witnessing the non-indicability of B′ (i.e., let P

be a non-trivial finitely generated perfect subgroup of B′). Then, the image σ(P ) of

subgroup P under σ should have trivial image under Dp by above. But, by Thurston

Stability Theorem 58, σ(P ) should be locally indicable which is a contradiction. So,

there cannot be such a realization σ.
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CHAPTER 4

CONCLUSIONS

In this thesis, we dealt with the answer to the question if a finite index subgroup of

Mod(Σg) lifts to Diff+(Σg) where Σg is a surface of genus g. Morita answered this

question for g ≥ 18 and later for g ≥ 5 [16]. We considered two different proofs of

this result.

In the first proof due to [21], we take a finite index subgroup Γ of π1(Σg, z) for

z ∈ Σg and g ≥ 2, and assume that Γ lifts to G(Σg, z). Then, we get a closed annulus

A from H2 \ {z}. Then, by Milnor 43 and Milnor-Wood 42 Inequalities, we get the

contradiction that the Euler numbers of two boundary components of this annulus

cannot be the same. From the result that Γ does not lift to G(Σg, z), we get our main

result.

For the second proof due to [22], we first show the fact that the braid group Bn is

non-indicable. Then, we take a subgroup P of B′ witnessing the non-indicability of

B′ where B′ is a quotient of B2g+1. Then, we show that the image of P under a

realization σ should be trivial. However, Thurston Stability Theorem 58 implies that

σ(P ) is locally indicable which is a contradiction.

In conclusion, we get Mod(Σg) is not realized by orientation preserving diffeomor-

phisms of Σg for g ≥ 2. Moreover, any finite index subgroup Γ of Mod(Σg, z) does

not lift to Diff+(Σg, z) where |z| ≥ 1 for the same g, and if we take z of an arbitrary

cardinality, then Γ does not lift to Diff+(Σg, z) for g ≥ 6.
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